1 Statik nach DWA-A 143-2: Regelstatiken MKG 26 - Ei 350/525, GW 5,00 m

Titel der Teilstatik: Regelstatiken MKG 26 - Ei 350/525, GW 5,00 m

Altrohrzustand:

Nachweis Auftrieb:

Berechnungsoptionen nach Regelwerk:

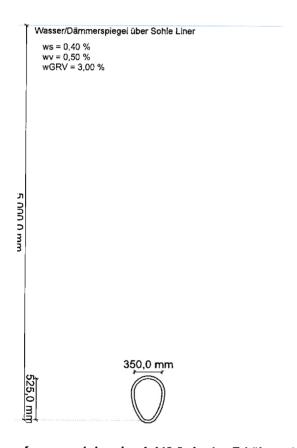
ARZ II Nein

Ja

1.1 Eingaben

1.1.1 Geometrie

Geometrie: Nennweite DN: Ei horizontal spiegeln:	Eiquerschnitt r 350/525 Nein			
Wanddicke Liner:	t∟	5,50	mm	
Gelenkringverformung:	wgr _v /r _L	3,00	%	
Art des Altrohres:	Normales Eipre	ofil mit B:H =	2:3	
Tiefe Vorverformung lange Seite:	w _v /rL	0,50	%	
Öffnungswinkel lokale Vorverformung:	2Ф	30,00	۰	
Art des Ringspaltes:	Konstantes Schrumpfmaß			
Ringspalt (konst. Schrumpfmaß):	w _s /U	0,400	%	


1.1.2 Materialien

Definition Material: Langzeitige Werte verwenden: Nachweis Schubspannung führen:	Manuelle De Ja Nein	efinition	
Materialbezeichnung: Eigengewicht Liner: Querkontraktionszahl: Werkstoff ist orthogonal anisotrop: Elastizitätsmodul Langzeit, charakteristisch: Elastizitätsmodul Kurzzeit, charakteristisch: Biegezugfestigkeit Langzeit, charakteristisch: Biegezugfestigkeit Kurzzeit, charakteristisch: Druckfestigkeit Langzeit, charakteristisch: Druckfestigkeit Kurzzeit, charakteristisch: Wärmedehnzahl:	UP-GF YL Nein EL	17,50 0,35 13.000,00 15.600,00 170,00 245,00 170,00 245,00 0,0000	kN/m³ [-] N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²
Teilsicherheitsbeiwert Material: 1.1.3 Lasten	ΥМ	1,35	[-]
Wasserspiegel über Sohle Liner: Gewicht Wasser:	h _w YW	5,00 10,00	m k N /m³

Temperaturänderung:	ΔΤ	0,00	К
Abminderungsfaktor dynamische Last manuell eingeben: Teilsicherheitsbeiwert Eigengewicht: Teilsicherheitsbeiwert Wasserdruck: Teilsicherheitsbeiwert Innendruck: Teilsicherheitsbeiwert Temperatur:	Nein YGE YW Ypi YT	1,35 1,50 1,50 1,10	E E E E

1.2 Ergebnisse

1.2.1 Lastfall ARZ II - hW 5,00 m, Langzeit

Die Gelenkringverformung wird analog A 143-2 als eine Erhöhung (wgrv/10) der eingegebenen örtlichen Verformung angesetzt. Vorgegebene Werte:

Lokale Vorverformung:	ω _V	0,50	%
Gelenkringverformung:	ωgr, _V	3,00	%
$\omega_{\rm v} = \omega_{\rm v} + \omega_{\rm v}/10 = 0.50 \% + (3.00 \% / 10)$		(A 14	3-2 Tabelle 8)
Lokale Vorverformung:	ω_{v}	0,80	%
Lokale Vorverformung absolut:		4,18	mm

Eine Berücksichtigung der Gelenkringverformung in der Geometrie liegt auf der unsicheren Seite, da durch die Aufweitung im Kämpfer das Verhältnis Höhe/Breite günstiger gegen Außendruck wird. Damit würden für den

Altrohrzustand II günstigere Ergebnisse berechnet werden, als	im Altrohrzustand I.		
Gelenkringverformung: Gelenkringverformung absolut, einseitig: Ringspalt:	WGR,v WGR,v ωs	0,00 0,00 0,40	% mm %
Spaltweite absolut (als konst. Ringspalt):	Ws	0,87	mm
1.2.1.1 Materialkennwerte			
Liner			
Teilsicherheitsbeiwert Material:	ΥМ	1,35	[-]
Querkontraktionszahl:	<u>Ľ</u>	0,35	[-]
E-Modul, Langzeit:	EL .	13.000,00	N/mm² N/mm²
E-Modul, Langzeit, Design: Verwendeter E-Modul:	EL,d E	9.629,63 10.973,94	N/mm²
verwendeter E-Iviodui.	_	10.975,94	IN/IIIIII
Zul. Druckfestigkeit, Langzeit:	$\sigma_{D,L}$	170,00	N/mm²
Zul. Druckfestigkeit, Langzeit, Design:	$\sigma_{D,L,d}$	-125,93	N/mm²
Zul. Biegezugfestigkeit, Langzeit:	σ _b Z,L	170,00	N/mm²
Zul. Biegezugfestigkeit, Langzeit, Design:	$\sigma_{bZ,L,d}$	125,93	N/mm²
Zul. Zugfestigkeit, Langzeit:	$\sigma_{Z,L}$	0,00	N/mm²
Zul. Zugfestigkeit, Langzeit, Design:	σz,L,d	0,00	N/mm²
1.2.1.2 Verformungsnachweis (Gebrauchslast)			
Relevanter Durchmesser für prozentuale Verformung:	d_V	437,50	mm
Spaltweite absolut (als konst. Ringspalt):	Ws	0,87	mm
Lokale Vorverformung absolut:	W _V	4,18	mm
Gelenkringverformung absolut, einseitig:	WGR,v	0,00	mm
Elastische Verformung absolut:	Wel	12,5	mm
Relative elastische Verformung:	δ _{v,el}	2,85	%
Zulässige Verformung elastisch:	zul δ _{v,el}	3,00	%
Die errechnete elastische Verformung ist kleiner als die zulässige V			
Gesamte Durchmesseränderung:	w	16,64	mm
Relative Gesamtverformung:	$\overset{v}{\delta_v}$	3,80	%
Anhaltswert Gesamtverformung:	$\delta_{V,A}$	10,00	%

1.2.1.3 Stabilitätsnachweis (Designwerte)

Der maßgebende Nachweis der Stabilität erfolgt über die im Abschnitt 7.6.4.2 (DWA-A 143-2) zugelassene (genauere) Variante einer Berechnung nach Theorie II. Ordnung unter Berücksichtigung der Vorverformungen und der Spaltbildung. Hierbei wird numerisch überprüft, ob ein elastisches Stabilitätsversagen (Beulen) unter gamma-facher Last eintritt. Darüber hinaus wird geprüft, ob die bei dieser Berechnung ermittelten Spannungen die vorgegeben maximalen Grenzspannungen für Zug und Druck mit einfacher Sicherheit nicht überschreiten.

Nachweis entfällt.

Spannungsnachweis Liner, ARZ II - hW 5,00 m				
Fläche (Wanddicke):		Α	5,50	mm²/mm
Außen				
		Druck	Zug	
Spannung in Element	Max σ _d	-121,49	75,71	N/mm²
Zul. Spannung, Langzeit, Design:	σL,d	-125,93	125,93	N/mm²
Ausnutzung Spannungen	U_{σ}	96,5	60,1	%
Der Spannungsnachweis Außen ist erfüllt				
Innen				
		Druck	Zug	

Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	-95,22 -125,93	103,26 125,93	N/mm² N/mm²
Ausnutzung Spannungen	U_σ	75,6	82,0	%
Der Spannungsnachweis Innen ist erfüllt.				
Die Spannungen liegen im zulässigen Bereich.	<u> </u>			11.11
Alle notwendigen Nachweise sind erbracht				100