1 Statik nach DWA-A 143-2: Regelstatiken MKG 26 - Ei 300/450, GW 4,50 m

Titel der Teilstatik: Regelstatiken MKG 26 - Ei 300/450, GW 4,50 m

Altrohrzustand: Nachweis Auftrieb:

Berechnungsoptionen nach Regelwerk:

ARZ II Nein Ja

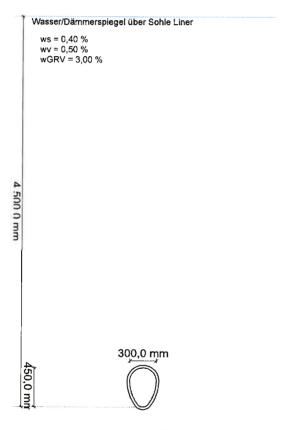
1.1 Eingaben

1.1.1 Geometrie

Geometrie: Eiquerschnitt nach DIN Nennweite DN: 300/450 Ei horizontal spiegeln: Nein Wanddicke Liner: 4,60 mm Gelenkringverformung: WGRv/rL 3,00 Art des Altrohres: Normales Eiprofil mit B:H = 2:3 Tiefe Vorverformung lange Seite: w_v/r_L 0,50 Öffnungswinkel lokale Vorverformung: 2Φ 30,00 Art des Ringspaltes: Konstantes Schrumpfmaß

Ringspalt (konst. Schrumpfmaß):

ws/U 0,400 %


1.1.2 Materialien

Definition Material: Langzeitige Werte verwenden:	Manuelle D	efinition	
Nachweis Schubspannung führen:	Ja Nein		
Materialbezeichnung:	UP-GF		
Eigengewicht Liner:	YL	17,50	kN/m³
Querkontraktionszahl:	μ	0,35	[-]
Werkstoff ist orthogonal anisotrop:	Nein		• •
Elastizitätsmodul Langzeit, charakteristisch:	ΕĻ	13.000,00	N/mm²
Elastizitätsmodul Kurzzeit, charakteristisch:	Eκ	15.600,00	N/mm ²
Biegezugfestigkeit Langzeit, charakteristisch:	σ _b z,L	170,00	N/mm²
Biegezugfestigkeit Kurzzeit, charakteristisch:	σ _{bZ,} κ	245,00	N/mm²
Druckfestigkeit Langzeit, charakteristisch:	σD,L	170,00	N/mm²
Druckfestigkeit Kurzzeit, charakteristisch:	σ _D ,κ	245,00	N/mm ²
Wärmedehnzahl:	αт	0,0000	3 1/K
Teilsicherheitsbeiwert Material:	γм	1,35	[-]
1.1.3 Lasten			
Wasserspiegel über Sohle Liner: Gewicht Wasser:	h _w YW	4,50 10,00	m kN/m³

Temperaturänderung:	ΔΤ	0,00	K
Abminderungsfaktor dynamische Last manuell eingeben: Teilsicherheitsbeiwert Eigengewicht: Teilsicherheitsbeiwert Wasserdruck: Teilsicherheitsbeiwert Innendruck: Teilsicherheitsbeiwert Temperatur:	Nein YGE YW Ypi YT	1,35 1,50 1,50 1,10	[-] [-] [-]

1.2 Ergebnisse

1.2.1 Lastfall ARZ II - hW 4,50 m, Langzeit

Die Gelenkringverformung wird analog A 143-2 als eine Erhöhung (wgrv/10) der eingegebenen örtlichen Verformung angesetzt. Vorgegebene Werte:

Lokale Vorverformung:	ω_v $\omega_{GR,v}$	0,50	%
Gelenkringverformung:		3,00	%
$\omega_{\rm V} = \omega_{\rm V} + \omega_{\rm V}/10 = 0.50~\% + (3.00~\%~/~10~)$		(A 14	3-2 Tabelle 8)
Lokale Vorverformung:	ω_{v}	0,80	%
Lokale Vorverformung absolut:		3,58	mm

Eine Berücksichtigung der Gelenkringverformung in der Geometrie liegt auf der unsicheren Seite, da durch die Aufweitung im Kämpfer das Verhältnis Höhe/Breite günstiger gegen Außendruck wird. Damit würden für den

Altrohrzustand II günstigere Ergebnisse berechnet werden, a	is in Altronizasiana j		
Gelenkringverformung:	$\omega_{GR,v}$	0,00	%
Selenkringverformung absolut, einseitig:	WGR,v	0,00	mm
Ringspalt:	ω_{s}	0,40	%
Spaltweite absolut (als konst. Ringspalt):	Ws	0,75	mm
.2.1.1 Materialkennwerte			
iner		4.05	
eilsicherheitsbeiwert Material:	γM	1,35	[-]
Querkontraktionszahl:	μ.	0,35	[-] N/mm²
E-Modul, Langzeit: E-Modul, Langzeit, Design:	El El,d	13.000,00 9.629,63	N/mm²
-woddi, Langzen, Design. /erwendeter E-Modul:	EL,a	10.973,94	N/mm²
erwendeter E-modul.	_		
/ul. Druckfestigkeit, Langzeit:	$\sigma_{D,L}$	170,00	N/mm²
ul. Druckfestigkeit, Langzeit, Design:	$\sigma_{D,L,d}$	-125,93	N/mm²
ul. Biegezugfestigkeit, Langzeit:	σ _b Z,L	170,00	N/mm²
/ul. Biegezugfestigkeit, Langzeit, Design:	σbZ,L,d	125,93	N/mm² N/mm²
'ul. Zugfestigkeit, Langzeit: 'ul. Zugfestigkeit, Langzeit, Design:	σz,L	0,00 0,00	N/mm²
	σz,L,d	0,00	18/11811
.2.1.2 Verformungsnachweis (Gebrauchslast)			
Relevanter Durchmesser für prozentuale Verformung:	d_V	375,00	mm
Spaltweite absolut (als konst. Ringspalt):	Ws	0,75	mm
okale Vorverformung absolut:	Wv	3,58	mm
Selenkringverformung absolut, einseitig:	WGR,v	0,00	mm
Elastische Verformung absolut:	Wel	10,5	mm
Relative elastische Verformung:	δ _{v,el}	2,80	%
ulässige Verformung elastisch:	zul δ _{v,el}	3,00	%
Die errechnete elastische Verformung ist kleiner als die zulässige			
Gesamte Durchmesseränderung:	w	14,10	mm
Relative Gesamtverformung:	δ_{v}	3,76	%
nhaltswert Gesamtverformung:	$\delta_{v,A}$	10,00	%

1.2.1.3 Stabilitätsnachweis (Designwerte)

Der maßgebende Nachweis der Stabilität erfolgt über die im Abschnitt 7.6.4.2 (DWA-A 143-2) zugelassene (genauere) Variante einer Berechnung nach Theorie II. Ordnung unter Berücksichtigung der Vorverformungen und der Spaltbildung. Hierbei wird numerisch überprüft, ob ein elastisches Stabilitätsversagen (Beulen) unter gamma-facher Last eintritt. Darüber hinaus wird geprüft, ob die bei dieser Berechnung ermittelten Spannungen die vorgegeben maximalen Grenzspannungen für Zug und Druck mit einfacher Sicherheit nicht überschreiten.

Nachweis entfällt.

Spannungsnachweis Liner, ARZ II - hW 4,50 m				
Fläche (Wanddicke):		Α	4,60	mm²/mm
Außen Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	Druck -100,65 -125,93	Zug 64,53 125,93	N/mm² N/mm²
Ausnutzung Spannungen	U_{σ}	79,9	51,2	%
Der Spannungsnachweis Außen ist erfüllt.		15 - 7 - 1 -		1.0
Innen		Druck	Zug	

Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	-80,87 -125,93	85,42 125,93	N/mm² N/mm²
Ausnutzung Spannungen	U_σ	64,2	67,8	%
Der Spannungsnachweis innen ist erfüllt.				
Die Spannungen liegen im zulässigen Bereich.				
Alle notwendigen Nachweise sind erbracht.				