1 Statik nach DWA-A 143-2: Regelstatiken MKG 26 - Ei 300/450, GW 4,00 m

Titel der Teilstatik: Regelstatiken MKG 26 - Ei 300/450, GW 4,00 m

Altrohrzustand: Nachweis Auftrieb:

Berechnungsoptionen nach Regelwerk:

ARZ II Nein Ja

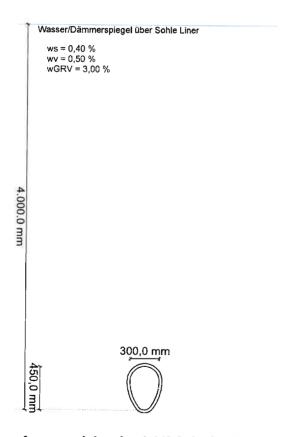
1.1 Eingaben

1.1.1 Geometrie

Geometrie: Eiquerschnitt nach DIN Nennweite DN: 300/450 Ei horizontal spiegeln: Nein Wanddicke Liner: 4,40 mm Gelenkringverformung: WGRv/rL 3,00 % Art des Altrohres: Normales Eiprofil mit B:H = 2:3 Tiefe Vorverformung lange Seite: w_v/r_L 0,50 % Öffnungswinkel lokale Vorverformung: 30,00 Art des Ringspaltes:

Ringspalt (konst. Schrumpfmaß):

$\begin{array}{ccc} \text{Konstantes Schrumpfma} \text{S} & \\ w_s/U & 0,400 & \% \end{array}$


1.1.2 Materialien

Definition Material: Langzeitige Werte verwenden:	Manuelle Def Ja	inition	
Nachweis Schubspannung führen:	Nein		
Materialbezeichnung:	UP-GF		
Eigengewicht Liner:	YL	17,50	kN/m³
Querkontraktionszahl:	μ	0,35	[-]
Werkstoff ist orthogonal anisotrop:	Nein		
Elastizitätsmodul Langzeit, charakteristisch:	EL	13.000,00	N/mm ²
Elastizitätsmodul Kurzzeit, charakteristisch:	Eκ	15.600,00	N/mm ²
Biegezugfestigkeit Langzeit, charakteristisch:	$\sigma_{bZ,L}$	170,00	N/mm ²
Biegezugfestigkeit Kurzzeit, charakteristisch:	σ _b z,κ	245,00	N/mm²
Druckfestigkeit Langzeit, charakteristisch:	$\sigma_{D,L}$	170,00	N/mm ²
Druckfestigkeit Kurzzeit, charakteristisch:	σD,K	245,00	N/mm²
Wärmedehnzahl:	ατ	0,00003	1/K
Teilsicherheitsbeiwert Material:	ΥМ	1,35	[-]
1.1.3 Lasten			
Wasserspiegel über Sohle Liner:	hw	4.00	m
Gewicht Wasser:	ΥW	10,00	kN/m³

Temperaturänderung:	ΔΤ	0,00 K
Abminderungsfaktor dynamische Last manuell eingeben: Teilsicherheitsbeiwert Eigengewicht: Teilsicherheitsbeiwert Wasserdruck: Teilsicherheitsbeiwert Innendruck: Teilsicherheitsbeiwert Temperatur:	Nein YGE YW Ypi YT	1,35 [-] 1,50 [-] 1,50 [-] 1,10 [-]

1.2 Ergebnisse

1.2.1 Lastfall ARZ li - hW 4,00 m, Langzeit

Die Gelenkringverformung wird analog A 143-2 als eine Erhöhung (wgrv/10) der eingegebenen örtlichen Verformung angesetzt. Vorgegebene Werte:

Lokale Vorverformung:	$ω_v$	0,50	%
Gelenkringverformung:	ω $_{GR,v}$	3,00	%
$\omega_{\rm V} = \omega_{\rm V} + \omega_{\rm V}/10 = 0.50 \% + (3.00 \% / 10)$		(A 14	3-2 Tabelle 8)
Lokale Vorverformung:	ω_{v}	0,80	%
Lokale Vorverformung absolut:		3,58	mm

Eine Berücksichtigung der Gelenkringverformung in der Geometrie liegt auf der unsicheren Seite, da durch die Aufweitung im Kämpfer das Verhältnis Höhe/Breite günstiger gegen Außendruck wird. Damit würden für den

Gelenkringverformung:	ωgr.v	0,00	%
Gelenkringverformung absolut, einseitig:	WGR,v	0,00	mm
Ringspalt:	wGR,ν Ws	0,40	%
Spaltweite absolut (als konst. Ringspalt):	Ws	0,75	mm
1.2.1.1 Materialkennwerte			
Liner			
Teilsicherheitsbeiwert Material:	YΜ	1,35	[-]
Querkontraktionszahl:	μ	0,35	[-]
E-Modul, Langzeit:	EL	13.000,00	N/mm²
E-Modul, Langzeit, Design:	E_L,d	9.629,63	N/mm²
√erwendeter E-Modul:	E	10.973,94	N/mm²
Zul. Druckfestigkeit, Langzeit:	σD.L	170,00	N/mm²
Zul. Druckfestigkeit, Langzeit, Design:	σ _{D,L,d}	-125,93	N/mm²
Zul. Biegezugfestigkeit, Langzeit:	σ _b Z,L	170,00	N/mm²
Zul. Biegezugfestigkeit, Langzeit, Design:	σ _b Z,L,d	125,93	N/mm²
Zul. Zugfestigkeit, Langzeit:	σz,L	0,00	N/mm²
Zul. Zugfestigkeit, Langzeit, Design:	$\sigma_{Z,L,d}$	0,00	N/mm²
1.2.1.2 Verformungsnachweis (Gebrauchslast)			
Relevanter Durchmesser für prozentuale Verformung:	dv	375,00	mm
Spaltweite absolut (als konst. Ringspalt):	Ws	0,75	mm
_okale Vorverformung absolut:	Wv	3,58	mm
Gelenkringverformung absolut, einseitig:	WGR,v	0,00	mm
Elastische Verformung absolut:	Wel	10,5	mm
Relative elastische Verformung:	δν.el	2,81	%
Zulässige Verformung elastisch:	$zul \delta_{v,el}$	3,00	%
Die errechnete elastische Verformung ist kleiner als die zulässige	Verformung.		
Gesamte Durchmesseränderung:	w	14,11	mm
Relative Gesamtverformung:	δ_{V}	3,76	%
Anhaltswert Gesamtverformung:	$\delta_{V,A}$	10,00	%

1.2.1.3 Stabilitätsnachweis (Designwerte)

Der maßgebende Nachweis der Stabilität erfolgt über die im Abschnitt 7.6.4.2 (DWA-A 143-2) zugelassene (genauere) Variante einer Berechnung nach Theorie II. Ordnung unter Berücksichtigung der Vorverformungen und der Spaltbildung. Hierbei wird numerisch überprüft, ob ein elastisches Stabilitätsversagen (Beulen) unter gamma-facher Last eintritt. Darüber hinaus wird geprüft, ob die bei dieser Berechnung ermittelten Spannungen die vorgegeben maximalen Grenzspannungen für Zug und Druck mit einfacher Sicherheit nicht überschreiten.

Nachweis entfällt.

Spannungsnachweis Liner, ARZ II - hW 4,00 m				
Fläche (Wanddicke):		Α	4,40	mm²/mm
Außen Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	Druck -99,38 -125,93	Zug 63,75 125,93	N/mm² N/mm²
Ausnutzung Spannungen	Uσ	78,9	50,6	%
Der Spannungsnachweis Außen ist erfüllt	1			
Innen		Druck	Zug	

Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	-79,23 -125,93	84,93 125,93	N/mm² N/mm²
Ausnutzung Spannungen	Uσ	62,9	67,4	%
Der Spannungsnachweis Innen ist erfüllt.				X
Die Spannungen liegen im zulässigen Bereich.		5 5		
Alle notwendigen Nachweise sind erbracht.				