1 Statik nach DWA-A 143-2: Regelstatiken MKG 26 - Ei 250/375, GW 4,50 m

Titel der Teilstatik: Regelstatiken MKG 26 - Ei 250/375, GW 4,50 m

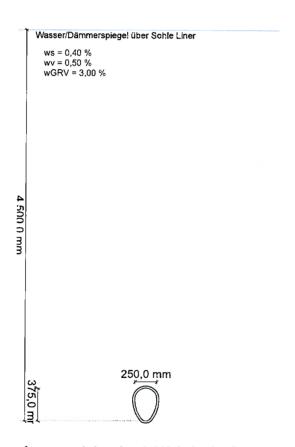
Altrohrzustand:
Nachweis Auftrieb:
Berechnungsoptionen nach Regelwerk:

ARZ II Nein Ja

1.1 Eingaben

1.1.1 Geometrie

Geometrie: Eiguerschnitt nach DIN Nennweite DN: 250/375 Ei horizontal spiegeln: Nein 3,80 Wanddicke Liner: mm Gelenkringverformung: WGRv/rL 3,00 % Art des Altrohres: Normales Eiprofil mit B:H = 2:3 Tiefe Vorverformung lange Seite: w_{ν}/r_L 0,50 % 2Φ Öffnungswinkel lokale Vorverformung: 30,00 Art des Ringspaltes: Konstantes Schrumpfmaß % Ringspalt (konst. Schrumpfmaß): w_s/U 0,400


1.1.2 Materialien

Definition Material: Langzeitige Werte verwenden: Nachweis Schubspannung führen:	Manuelle Def Ja Nein	inition	
Materialbezeichnung: Eigengewicht Liner:	UP-GF	17,50	k N /m³
Querkontraktionszahl: Werkstoff ist orthogonal anisotrop:	γ∟ μ Nein	0,35	[-]
Elastizitätsmodul Kurzzeit, charakteristisch: Elastizitätsmodul Kurzzeit, charakteristisch:	EL Ek	13.000,00 15.600.00	N/mm² N/mm²
Biegezugfestigkeit Langzeit, charakteristisch: Biegezugfestigkeit Kurzzeit, charakteristisch:	σ _{bZ,L} σ _{bZ.K}	170,00 245.00	N/mm² N/mm²
Druckfestigkeit Kurzzeit, charakteristisch: Druckfestigkeit Kurzzeit, charakteristisch:	$\sigma_{D,L}$	170,00 245,00	N/mm² N/mm²
Wärmedehnzahl:	σ _{D,K} α _T	0,00003	
Teilsicherheitsbeiwert Material:	ΥМ	1,35	[-]
1.1.3 Lasten			
Wasserspiegel über Sohle Liner: Gewicht Wasser:	h _W γW	4,50 10,00	m kN/m³

Temperaturänderung:	ΔΤ	0,00 K
Abminderungsfaktor dynamische Last manuell eingeben: Teilsicherheitsbeiwert Eigengewicht: Teilsicherheitsbeiwert Wasserdruck: Teilsicherheitsbeiwert Innendruck: Teilsicherheitsbeiwert Temperatur:	Nein YGE YW Ypi YT	1,35 [-] 1,50 [-] 1,50 [-] 1,10 [-]

1.2 Ergebnisse

1.2.1 Lastfall ARZ II - hW 4,50 m, Langzeit

Die Gelenkringverformung wird analog A 143-2 als eine Erhöhung (wgrv/10) der eingegebenen örtlichen Verformung angesetzt. Vorgegebene Werte:

Lokale Vorverformung:	ω_V	0,50	%
Gelenkringverformung:	$\omega_{GR,V}$	3,00	%
$\omega_{\rm V} = \omega_{\rm V} + \omega_{\rm V}/10 = 0.50 \% + (3.00 \% / 10)$		(A 14	3-2 Tabelle 8)
Lokale Vorverformung:	ω_{v} w_{v}	0,80	%
Lokale Vorverformung absolut:		2,98	mm

Eine Berücksichtigung der Gelenkringverformung in der Geometrie liegt auf der unsicheren Seite, da durch die Aufweitung im Kämpfer das Verhältnis Höhe/Breite günstiger gegen Außendruck wird. Damit würden für den

Altrohrzustand II günstigere Ergebnisse berechnet werden, als im	Altrohrzustand I.		
Gelenkringverformung: Gelenkringverformung absolut, einseitig: Ringspalt: Spaltweite absolut (als konst. Ringspalt):	WGR,v WGR,v Ws Ws	0,00 0,00 0,40 0,62	% mm % mm
1.2.1.1 Materialkennwerte			
Liner Teilsicherheitsbeiwert Material: Querkontraktionszahl: E-Modul, Langzeit: E-Modul, Langzeit, Design: Verwendeter E-Modul:	YM µ EL EL,d E	1,35 0,35 13.000,00 9.629,63 10.973,94	[-] [-] N/mm² N/mm² N/mm²
Zul. Druckfestigkeit, Langzeit: Zul. Druckfestigkeit, Langzeit, Design: Zul. Biegezugfestigkeit, Langzeit: Zul. Biegezugfestigkeit, Langzeit, Design: Zul. Zugfestigkeit, Langzeit: Zul. Zugfestigkeit, Langzeit: Zul. Zugfestigkeit, Langzeit, Design:	σ _{D,L} , _d σ _{b,Z,L} σ _{b,Z,L,d} σ _{Z,L} σ _{Z,L,d}	170,00 -125,93 170,00 125,93 0,00 0,00	N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²
1.2.1.2 Verformungsnachweis (Gebrauchslast)			
Relevanter Durchmesser für prozentuale Verformung:	d_V	312,50	mm
Spaltweite absolut (als konst. Ringspalt): Lokale Vorverformung absolut: Gelenkringverformung absolut, einseitig:	Ws Wv WGR,v	0,62 2,98 0,00	mm mm mm
Elastische Verformung absolut: Relative elastische Verformung: Zulässige Verformung elastisch:	Wel Ōv,el zul δ _{v,el}	8,9 2,84 3,00	mm % %
Die errechnete elastische Verformung ist kleiner als die zulässige Verfo	ormung.	1000	
Gesamte Durchmesseränderung: Relative Gesamtverformung: Anhaltswert Gesamtverformung:	w δ _v δ _{v,A}	11,87 3,80 10,00	mm % %

1.2.1.3 Stabilitätsnachweis (Designwerte)

Der maßgebende Nachweis der Stabilität erfolgt über die im Abschnitt 7.6.4.2 (DWA-A 143-2) zugelassene (genauere) Variante einer Berechnung nach Theorie II. Ordnung unter Berücksichtigung der Vorverformungen und der Spaltbildung. Hierbei wird numerisch überprüft, ob ein elastisches Stabilitätsversagen (Beulen) unter gamma-facher Last eintritt. Darüber hinaus wird geprüft, ob die bei dieser Berechnung ermittelten Spannungen die vorgegeben maximalen Grenzspannungen für Zug und Druck mit einfacher Sicherheit nicht überschreiten.

Nachweis entfällt.

Spannungsnachweis Liner, ARZ II - hW 4,50 m				
Fläche (Wanddicke):		Α	3,80	mm²/mm
Außen				
Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	Druck -116,87 -125,93	Zug 73,01 125,93	N/mm² N/mm²
Ausnutzung Spannungen	U_{σ}	92,8	58,0	%
Der Spannungsnachweis Außen ist erfüllt.				
Innen				
In-D-# F Dire 0.000 00 00 00 00 00 00 00 00 00 00 00		Druck	Zug 	

IngSoft EasyPipe 2.6.6.0 - 20.01.2018 - 15:37:14

Spannung in Element Zul. Spannung, Langzeit, Design:	Max σ _d σ _{L,d}	-91,31 -125,93	99,76 125,93	N/mm² N/mm²
Ausnutzung Spannungen	U_σ	72,5	79,2	%
Der Spannungsnachweis Innen ist erfüllt.				
Die Spannungen liegen im zulässigen Bereich.				4
Alle notwendigen Nachweise sind erbracht.			4-10-01	

Durch Vergleichsrechnung geprüft